CHROM. 7842

GAS-LIQUID CHROMATOGRAPHIC STUDIES OF REACTIONS AND STRUCTURAL RELATIONSHIPS OF STEROIDS

II. POSITIONS 3, 11, AND 20 IN THE PREGNANE SERIES*

FRANTZ A. VANDENHEUVEL

Animal Research Institute, Research Branch, Canada Department of Agriculture, Ottawa, Ontario KIA OC6 (Canada) (Received July 15th, 1974)

SUMMARY

Qualitative and quantitative effects of classical reactions on steroids observed by gas-liquid chromatography (GLC) under standardized conditions, including the double internal standard technique, are reported. Simple procedures applicable to nanogram amounts of reactants which afford excellent yields of the major products are described. Reactions studied include the Wolff-Kishner removal of keto groups (WK), their conversion to hydroxyl groups by NaBH₄ (RD), and to dioxolone derivatives by ethylene glycol (DO); the conversion of hydroxyl to keto groups by CrO_3 (OX), and to TMS ethers by hexamethyldisilazane; the hydrolysis of dioxolone and TMS derivatives by H⁺ (HY). GLC chromatograms of reaction mixtures of single and multistep reactions readily provide information on effects on functional groups at positions 3, 11, and 20 in the pregnane series, and the retention times of many steroids unavailable from commercial or other sources. GLC data analysis provides relationships between steroid structure and retention time from which methods for the computation of retention times and for steroid identification are designed. The accuracy of the computation methods is demonstrated.

INTRODUCTION

The use of two internal standards in the gas-liquid chromatographic (GLC) analysis of steroids has afforded a simple means of determining retention times under highly reproducible conditions precisely correlated to nominal retention times A and B of the standards^{1,2}. By applying corrections for small fluctuations of temperature and carrier gas velocity based on observed retention times A' and B' of the standards (*cf.* eqns. 1–5 in ref. 2), normalized retention times, t'_{NR} , were consistently reproduced for all steroids throughout the long life of the columns². The number of steroids that could conceivably correspond to an observed retention time thus became very small,

^{*} Contribution No. 546 of the Animal Research Institute.

and consequently, positive identification of peaks through independent discriminatory methods was considerably simplified. Precise retention time measurements also permitted a reliable comparison of data from which the rules relating t'_{NR} to steroid structure were established. The precision of retention times computed on the basis of these rules was unequivocally demonstrated².

It is the purpose of the present series to show that the above rules which take into consideration the various structural features commonly found in naturally occurring steroids can be applied generally and used effectively to identify these compounds (cf. Discussion).

In Part 1², the logarithmic expression of t'_{NR} defined as $L_R = 10^3 \times \log t'_{NR}$ (eqn. 6 in ref. 2) was obtained for 99 steroids of the androstane series characterized by any of the following functional groups alone or in all possible combinations: 3-, 11- and 17-keto, 3a-, 3β -, 11β - and 17β -hydroxy. Otherwise unobtainable steroids were systematically synthesized by the application of classical reactions using procedures adapted to amounts from 0 to 1 mg, and to the GLC observation of reaction mixtures. This work not only afforded required t'_{NR} values but also numerous observations on the course of the classical reactions with groups at positions 3, 11, and 17, which could be used in identification².

In the present article, data on the application of the same synthetic procedures to groups at positions 3, 11, and 20 of the pregnane molecule are described in Tables I-III and Diagrams 1-11. Observations on the course of the reactions with these groups are presented and discussed. Following the pattern previously adopted, the 121 steroids relevant to this study were classified so as to emphasize the M- and G-features, *i.e.*, those which affect the structure of ring A and that of the rest of the molecule, respectively². The resulting Tables V-XV list these steroids according to M-features for each of the following 11 groups: P(11), P(11 β), P(11,20), P11 β (20), P20 β (11), P20 α (11), P11 β 20 β , P11 β 20 α , P(20), P20 β , and P20 α . Among other data, these tables show the G_R values (contribution to L_R of G-features) derived from $L_R = M_R + G_R$ (eqn. 8 in ref. 2), where M_R , the contribution to L_R of M-features, is the logarithmic expression $M_R = 10^3 \times \log t'_{MR}$ (eqn. 7 in ref. 2) of retention time, t'_{MR} , of the corresponding M-steroid, *i.e.*, that with M-features only². M_R and t'_{MR} values for the Msteroids of the pregnane series are listed in Table IV.

The data were analyzed (cf. GLC data analysis in ref. 2) to obtain the patterns of G_R -normal and G_R -odd steroids, and the ΔG_R values of related groups (Table XVI). Relatedness² with groups of the androstane series² were also established (Table XVI) and the resulting ΔG_R values were used to compute the L_R values for steroids relevant to the present article from the L_R values of M-corresponding steroids described in Part I². Errors obtained by comparison of computed with observed L_R values are shown in Table XVII.

Symbols and abbreviations, including shorthand formulae of steroids used in this series have been defined².

EXPERIMENTAL

The GLC techniques and the preparative procedures relevant to this article have been described². The classical reactions used included: RD, reduction of keto groups by NaBH₄; WK, reductive removal of keto groups through the Wolff-Kishner reaction; DO, conversion of keto groups to dioxolone (ketal) derivatives; OX, CrO_3 oxidation of alcohols to ketones; TMS, conversion of OH groups to trimethylsilyl ethers; HY, acid hydrolysis of dioxolone or TMS derivatives.

The procedures were applied as described² except in two cases, where an increase in the yield of desired products required the following modifications (*cf.* Discussion):

(a) The DO derivatization of 20-ketones was performed with only 0.5 mg of paratoluenesulfonic acid by extending the reaction time from 5 to 7.5 h with toluene addition every hour.

(b) The 30-min RD reduction of $5\beta P(11,20)$ and $5\alpha P(11,20)$ was performed with 2 mg of NaBH₄ only (cf. Table II).

Thin-layer chromatography (TLC), performed as described in ref. 3, was used extensively to purify reaction products (cf. Discussion): When this was the case a test plate obtained with part of the reaction mixture was sprayed^{3,4} to locate the major products. The resulting information was transferred to an unsprayed plate from which the bands were eluted³, and the gas-liquid chromatograms before and after purification were compared. The inclusion of pilot dyes³ in all solutions submitted to TLC helped considerably in locating bands on the unsprayed plates³ (cf. Discussion).

Data

In Tables I–III and Diagrams 1–11, describing products of reactions or reaction sequences, data are usually restricted to the main products. Appropriate symbols in bold type at the right, and occasionally in the middle of the diagrams indicate the reactions involved. The percentage of product(s) in each reaction mixture is indicated in bold print above the relevant formula; this is followed by the t'_{NR} value (in 10^{-2} min) preceded by D or N to indicate whether the mixture was submitted to TMS derivatization or not.

When the DO reaction is involved, the L_R value of the initial steroid and that of its ketal derivative, both as TMS derivatives, and the difference $\angle iDO$ of these values are given. Finally, when TLC was used as a purification step, the R_b value of the compound, *i.e.*, its relative migration distance vs. Sudan blue^{3,4}, is shown.

In Tables IV-XV, listing t'_{NR} , L_R , M_R , and G_R values, the sources of steroids are indicated as follows: A capital letter followed by digits is the catalogue number of Steraloids Inc.^{*}, where the compound originated; PREP denotes a steroid synthesized in this laboratory by the method indicated; SRC refers to a gift from the Steroid Reference Collection^{**}; COMP denotes an L_R value computed through the method indicated.

DISCUSSION

Steroid preparation

In multistep preparations, the number of unwanted products tended to increase in successive steps due to the accumulation of compounds derived from byproducts. As shown below, the DO reaction often used in preparations gave rise to

^{*} P.O. Box 127, Pawling, N.Y. 12564, U.S.A.

^{**} Cf. Acknowledgements.

an unusually high proportion of by-products. This, together with products and byproducts from up to 10% impurities in the starting materials, made intermediate TLC purification steps desirable in many cases. Effective TLC purification often required the removal and elution of closely-spaced bands while limiting the material thus removed as much as possible to the width of such bands. Since this operation was performed with TLC plates that had not been sprayed to reveal the band positions so as to avoid contamination or alteration of products, the precise location of bands was obtained from sprayed test plates in relation to a number of pilot dyes included in all test solutions³. Although this procedure was rather wasteful of material and although complete purification was seldom obtained, the purity of main products and the clarity of relevant GLC chromatograms were much improved through its application.

In Tables I-III and Diagrams 1-11, data concerning the present preparations were limited to main products, to make apparent the remarkable similarity in behaviour of homologous compounds undergoing the same reactions. Observations on the course of these reactions with various functional groups can be summarized as follows.

RD. Under the conditions used², both (3) and (20) were completely reduced within 30 min, while the complete reduction of (11) required 2 h (Tables I and II). The results are symbolized as follows:

 $5a(3) \rightarrow 5a3\beta$; $5\beta(3) \rightarrow 5\beta3a$; $\Delta 4(3) \rightarrow \Delta 43\beta$; $(11) \rightarrow 11\beta$; $(20) \rightarrow 20a + 20\beta$.

Reduction of (3) and (11) essentially yielded a single stereoisomer, as observed with (3), (11), and (17) in the androstane series².

The proportion of 20a isomer from the reduction of (20), while always lowest, was higher with a functional group present at position 11 (Table 1). The proportion

TABLE I

REDUCTION BY NaBH₄ (2 h) OF 20-KETONES*

Starting material**	Source	Percentage of main products***		20α/20β
		20a	20 β	-
5βΡ3β(20)	P8180	15	85	15/85
5βΡ3α(20)	P8150	16	84	16/84
5α P 3β(20)	P3830	14	86	14/86
				Av. 15/85
5 αP3 β11β(20)	SRC	28	72	28/72
5βP(11,20)	cf. Diagram 9A	25	75	25/75
5 aP(11,20)	cf. Diagram 9B	25	75	25/75
5βP3β(11,20)	P7900	27	73	27/73
5βP(3,11,20)	Q500	30	70	30/70
$5\beta P3\alpha(11,20)$	P7850	25	75	25/75
$5\alpha P(3,11,20)$	P5630	25	75	25/75
$5\alpha P3\beta(11.20)$	P3600	27	73	27/73
∠14P(3,11,20)	Q4160	31	6 9	31/69
;				Av. 28/72

* Under these conditions (11) is converted to 11β .

** GLC properties of starting materials: P(20) compounds, cf. Table XIII; P(11,20) compounds, cf. Table VII.

^{***} GLC properties of 20β compounds, cf. Table XIV; for 20α compounds, cf. Table XV; for $11\beta 20\beta$ and $11\beta 20\alpha$ compounds, cf. Tables XI and XII, respectively.

TABLE II

REDUCTION BY NaBH₄ (30 min) OF 11,20-KETONES

Starting	Concentration	11β20α/11β20β***			
material"	20a(11)	20 <i>β(11)</i>	11β20α	11β20β	
5βP(11,20)**	13 D 426 $R_b = 0.770$	37 D 408 $R_b = 0.740$	12 D 499 $R_b = 0.700$	$ \begin{array}{l} 38 \\ D 442 \\ R_b = 0.650 \end{array} $	24/76
5α P (11,20)**	14 D 468 $R_b = 0.770$	37 D 457 $R_b = 0.750$	11 D 556 $R_b = 0.710$	38 D 501 $R_b = 0.664$	22/78
5βΡ3β(11,20)	$ \begin{array}{l} 12 \\ D 850 \\ R_b = 0.317 \end{array} $	23 D 816 $R_b = 0.257$	13 D 981 $R_b = 0.215$	52 D 874 $R_b = 0.145$	20/80
5βP(3,11,20) ^{\$}	12 D 845 $R_b = 0.220$	36 D 805 R _b = 195	10 D 985 $R_b = 0.171$	43 D 887 $R_b = 0.124$	19/81
5βP3α(11,20)	16 D 845 $R_b = 0.220$	35 D 805 $R_b = 0.195$	9 D 985 $R_b = 0.171$	40 D 887 $R_b = 0.124$	18/82
5αP(3,11,20) ⁸	13 D 1068 $R_b = 0.298$	$34 D 1048 R_b = 0.248$	$ \begin{array}{l} 11 \\ D \\ 1278 \\ R_{b} = 0.179 \end{array} $	42 D 1158 $R_h = 0.120$	21/79
5αP3/β(11,20)	14 D 1068 $R_b = 0.298$	31 D 1048 $R_b = 0.248$	$ \begin{array}{l} 11 \\ D \ 1278 \\ R_b = 0.179 \end{array} $	44 D 1158 $R_b = 0.120$	20/80
⊿4P(3,11,20) [§]	19 D 973 $R_b = 0.338$	32 D 962 $R_b = 0.287$	13 D 1171 $R_b = 0.261$	36 D 1060 $R_b == 0.117$	26/74

* For GLC data and origin of 11,20 ketones, cf. Table VII.

** With only 2 mg of NaBH₄ (cf. text).

*** Concentrations (%) rounded up to the nearest unit.

⁵ 5 β P(3), 5 α P(3), and Δ 14P(3) ketones yield 5 β P3 α , 5 α P3 β , and Δ 14P3 β products, respectively.

¹⁴ GLC properties of $20\beta(11)$, $20\alpha(11)$, $11\beta 20\beta$, and $11\beta 20\alpha$ products are listed in Tables IX, X, XI, and XII, respectively.

¹¹⁵ The ratio of $11\beta 20\alpha$ to $11\beta 20\beta$ products averaged to 21/79 (cf. text).

of $11\beta 20\alpha$ vs. $11\beta 20\beta$ product was lower after 30 min (Table II) than after 2 h (Table I). This indicated that the reduction of (11) was slower in the $20\alpha(11)$ than in the $20\beta(11)$ isomer.

Unexpectedly, the reduction of $5\alpha P(11,20)$ and $5\beta P(11,20)$ (cf. Table II) was almost complete in 30 min with 10 mg of NaBH₄²; reasonable yields of $20\alpha(11)$ and $20\beta(11)$ compounds were obtained, however, when only 2 mg of reagent were used (cf. above).

In GLC chromatograms of the reduction mixtures, the relatively minor 20a(11) peak was in all cases overlapped by that of the $20\beta(11)$ and $11\beta20\beta$ products. The retention time of 20a compounds was always higher than that of the corresponding 20β .

118

TABLE III

GLC DATA^{*} ON THE PREPARATION OF $5\beta P3\beta(11)$, $5\beta P(3,11)$ AND $5\beta P3\beta(11\beta)$ (SEQUENCE A), $5\beta P3a(11)$ AND $5\beta P3a(11\beta)$ (SEQUENCE B); $5\alpha P3\beta(11)$, $5\alpha P(3,11)$, AND $5\alpha P3\beta(11\beta)$ (SEQUENCE C) BY THE METHOD EXEMPLIFIED IN DIAGRAM 6

Sequence	Starting material	Source	Concentrations, t'_{NR} and L_R values of main products				
			WK step		RD (2 h) step**	OX step	
A	$5\beta P3\beta(11,20)$ D 598 $L_R = 2777$	P7900	$5\beta P3\beta(11)$ 48 D 366 $L_R = 2563$	$5\beta P3\beta 11\beta$ 45 D 414 $L_R = 2617$	$5\beta P 3\beta 1 1\beta$ 94 D 414 $L_R = 2617$	$5\beta P(3,11)$ 82 D,N 344 $L_R = 2536$	$5\beta P3\beta(11)$ 12 D 366 $L_R = 2563$
B	$5\beta P3\alpha(11,20)$ D 598 $L_R = 2776$	P7850	$5\beta P3a(11)$ 36 D 365 $L_R = 2562$	$5\beta P3\alpha 11\beta$ 56 D 419 $L_R = 2622$	5 β P3 α 11 β 92 D 419 $L_R = 2622$	$5\beta P(3,11)$ 70 D 344 $L_R = 2536$	$5\beta P3\alpha(11)$ 20 D 365 $L_R = 2562$
С	$5\alpha P3\beta(11,20)$ D 756 $L_R = 2878$	P3600	$5\alpha P3\beta(11)$ 35 D 460 $L_R = 2663$	$5\alpha P3\beta 11\beta$ 54 D 540 $L_{R} = 2732$	$5\alpha P3\beta 11\beta$ 92 D 540 $L_R = 2732$	$5\alpha P(3,11)$ 80 D 391 $L_R = 2592$	$5\alpha P3\beta(11)$ 10 D 460 $L_R = 2663$

* Limited to main products.

...

** The RD step yields mixtures including a high concentration of 11β product; direct oxidation of WK mixtures led to results very similar to those shown in the last two columns.

Reaction	ŀ		5β Ρ3 β(20) D 435		
	92	2	4	2	
	5βΡ3β	5/βΡ3/β(20)	5βΡ3β20β	5βΡ3β20α	
	D 252.5	D 435	D 564	D 606	

Diagram 1. Synthesis of $5\beta P3\beta$.

5/3P3/3(1	1,20)
D 598	

Reaction		
RD		
(2 h)	73 5βΡ3β11β20β D 874	27 5βΡ3β11β20α D 081
	D 0/4	D 901

Diagram 2. Synthesis of $5\beta P3\beta 11\beta 20\beta$ and $5\beta P3\beta 11\beta 20\alpha$. Data relevant to the complete reduction of other (11,20) compounds are listed in Table I.

		5β Ρ 3β(11,20) D 598		
Reaction			,	
(30 min)	10 5βΡ3β20β(11) D 810	66 5βΡ3β11β20β D 874	24 5βΡ3β11β20α D 981	

Diagram 3. Synthesis of $5\beta P3\beta 20\beta(11)$. Data relevant to the synthesis of other members of the P20 $\beta(11)$ group by the same method are listed in Table II.

-

Reaction			5βP(3 D,N 5	,11,20) 572		
WK	³56 5βP(11) D,N 184.5	36 5βΡ11β D.N 211	2 5βΡ11β(20) D 367	3 5βΡ3α11β D 419	2 5βΡ11β20β D 440	1 5βΡ11β20α D 500
OX • • • • • •	93 5βΡ(D,N	11) 184.5	5 5βΡ(1 D,N	1,20) 303	2 5βΡ(D,N	(3,11) 344
Diagram 4.	Synthesis of 5	5β P(11) and 5/	β Ρ 11β.			
Reaction			5αP D,Ν	(3,11,20) N 650		
WK	36 5αP(11) D 201	54 5αΡ11β D 234	3 5αΡ3β(11) D 460	2 5αΡ11β(20) D 412	3) 5αΡ11β20β D 500	2 5αΡ11β20α D 557
OX	<mark>92</mark> 5αP(D,N	11) 201	2 5aP(3,11) D,N 391		6 5αP(11,20) D,N 334	
Diagram 5	. Synthesis of :	5 aP(11) and 5	α Ρ11β ,			
Reaction			5βP. D 59	3 <i>/</i> 3(11,20) 98		
WK	48 5βΡ3β(11) D 366	45 5βΡ3β11, D 414	ß	5 5 1	β Ρ3β11β20β) 874	2 5βΡ3β11β20α D 981
RD (2 h)	94 5βl D 4	Ρ3β11β 414		4 5 1	βΡ3β11β20β D 874	2 5βΡ3β11β20α D 981
OX	82 5βP(3,11) D 344	12 5βΡ3β(1) D 366	1)	- 5 5 1	β P3 β(11,20) 598	1 5βΡ3β20β(11) D 816

Diagram 6. Synthesis of $5\beta P3\beta(11)$, $5\beta P3\beta(11\beta)$ and $5\beta P(3,11)$.

.

As shown by R_b values, isolation of the 30-min reduction products (Table II) was made possible by the faster migration (lower polarity) of incompletely reduced products, and by the faster migration of the 20α isomer of both incompletely and completely reduced products.

There was evidence of some reduction of $\Delta 4(3)$ to $5\alpha 3\beta$ and $5\beta 3\alpha$. However, the $\Delta 4$ and $\Delta 5$ double bonds in $\Delta 43\beta$ and $\Delta 53\beta$ were unaffected.

F. A. VANDENHEUVEL

Reaction	А 5βР3β(11,20) D 598 (2777)	B 5βP3α(11,20) D 598 (2776)	C 5αP3β(11,20) D 756 (2878)
DO			
	93	95	80
	5βP3β(11)DO(20)	5βP3a(11)DO(20)	$5\alpha P3\beta(11)DO(20)$
	D 1152 (3061)	D 1132 (3053)	D 1446 (3160)
	(1DO(20) = 284)	$\Delta 1DO(20) = 277$	$\varDelta DO(20) = 282$
	$R_{h} = 0.700$	$R_{b} = 0.700$	$R_{b} = 0.700$
RD			
(2 h)	94	95	85
	5βΡ3β11βDO(20)	5βΡ3α11βDO(20)	$5\alpha P3\beta 11\beta DO(20)$
	D 1293 (3112)	D 1278 (3107)	D 1690 (3228)
	(1DO(20) = 244)	(1DO(20)) = 246	$\Delta 1DO(20) = 256$
	$R_b = 0.950$	$R_b=0.950$	$R_{b} = 0.940$
HY			4
	90	87	75
	5βΡ3β11β(20)	$5\beta P3\alpha 11\beta(20)$	$5\alpha P3\beta I1\beta(20)$
	D 726 (2861)	D 723 (2859)	D 938 (2972)
	$R_{b} = 0.455$	$R_b = 0.437$	$R_b = 0.358$

Diagram 7. Synthesis of (A) $5\beta P3\beta 11\beta(20)$, (B) $5\beta P3\alpha 11\beta(20)$ and (C) $5\alpha P3\beta 11\beta(20)$ by application of the reaction sequence DO, RD, HY to the corresponding (11,20) compounds. The percentage of the main product in each reaction mixture, and the R_b values (TLC) at the DO and RD steps are given (cf. text); $\Delta DO(20)$ is the difference between the L_R value of the compound and that of the ketalized compound, both as TMS derivatives (cf. text).

Reaction	Α	В	С
	$5\beta P(3,11,20)$	$5\alpha P(3, 11, 20)$.414P(3,11,20)
	D 572 (2758)	D 650 (2813)	D 740 (2869)
DO			
	93	95	75
	$5\beta P(11) DO(3,20)$	$5\alpha P(11) DO(3,20)$	∠14P(11)DO(3,20)?
	D 1740 (3240)	D 1926 (3284)	D 1858 (3269)
	(1DO(3,20) = 482)	(1DO(3,20) = 471)	.1DO(3,20) = 400
RD			
(2 h)	95	92	80
	5βP11βDO(3,20)	$5\alpha P11\beta DO(3,20)$	∠14P11βDO(3,20)?
	D,N 2008 (3302)	D,N 2260 (3354)	D,N 2194 (3341)
	∠1 <i>DO</i> (3,20) == 440	(1DO(3,20) = 434)	.(1DO(3,20) = 348)
НҮ		·	
	90	87	75
	5βP11β(3,20)	$5\alpha P11\beta(3,20)$	∠14P11β(3,20)
	D,N 728 (2862)	D,N 832 (2920)	D,N 984 (2993)
	$R_b=0.800$	$R_{b} = 0.816$	$R_{b} = 0.715$

Diagram 8. Synthesis of (A) $5\beta P11\beta(3,20)$, (B) $5\alpha P11\beta(3,20)$ and (C) $\varDelta 4P11\beta(3,20)$ by application of the reaction sequence DO, RD, HY to the corresponding (11,20) compounds. The percentage of the main product in each reaction mixture is given; $\varDelta DO(3,20)$ is the difference the between L_R value of the compound and that of the ketalized compound, both as TMS derivatives; note the much lower value for the $\varDelta 4(11)$ and $\varDelta 411\beta$ compounds (cf. text).

120

Α 5βΡ3α(11 D 598 (2	,20) 776)	Reaction	Β 5αΡ3β(1 D 756 (2	1,20) 878)	
95 $5\beta P3 \alpha (11)$ D 1132 ($\Delta DO(20)$ $R_b = 0.7$)DO(20) 3053) = 277 00	$\begin{array}{c} 80\\ 5\alpha P3\beta(11)DO(20)\\ D 1446 (3160)\\ ADO(20) = 282\\ R_b = 0.700 \end{array}$		$805\alpha P3\beta(11)DO(20)D 1446 (3160)ADO(20) = 282R_b = 0.700$	
45 5βP3α(11)DO(20) Unreacted, removed by TLC	45 5βP(3,11)DO(20) D,N 1093 (3029) $\Lambda DO(20) = 286$ $R_h = 0.950$	ON TLC fraction $R_b = 0.700$	55 $5\alpha P(3,11)DO(20)$ D,N 1224 (3087) $\Delta DO(20) = 279$ $R_b = 0.950$	25 $5\alpha P3\beta(11)DO(20)$ Unreacted, removed by TLC	
6 5 β PI1 β DO(20) D,N 655 (2816) $R_{h} = 0.950$ Removed by TLC	92 $5\beta P(11)DO(20)$ D,N 572 (2757) $\Delta DO(20) = 277$ $R_b = 1.00$	$\frac{WK}{C}$ On TLC fraction $R_b = 0.950$	70 $5\alpha P(11)DO(20)$ D,N 634 (2802) $\angle 1DO(20) = 278$ $R_b = 1.00$	6 5αΡΙ1βDO(20) D,N 730 (2863) $R_b = 0.950$ Removed by TLC	
90 5βP(11,2 D,N 302	0) (2480)	HY On TLC fraction $R_b = 1.00$	82 5@P(11,2 D,N 334	20) ¥ (2524)	

...

Diagram 9. Synthesis of (A) $5\beta(11,20)$ and (B) $5\alpha P(11,20)$. The percentages of the main products in the reaction mixtures are indicated; $\Delta 1DO(3,20)$ and $\Delta 1DO(20)$ are the differences between the L_R values of the compound and those of the ketalized compound (cf. text).

A $5\beta P(11) DO(20)^*$ D,N 572 (2757) $R_h = 1.00$ Cf. Diagram 9A	Reaction		B $5\alpha P(11) DO(20)^*$ D,N 634 (2802) $R_b = 1.00$ Cf. Diagram 9B
	RD		
92 $5\beta P11\beta DO(20)$ D,N 655 (2816) (21DO(20) = 250) $R_b = 0.950$	(2 h)		80 $5\alpha P11\beta DO(20)$ D,N 730 (2863) $\Delta DO(20) = 248$ $R_b = 0.950$
· · · · · · · · · · · · · · · · · · ·	HY		
90 5βΡ11β(20) D,N 368 (2506)	On TLC fraction $R_b = 0.950$	47.4	80 5αP11β(20) D,N 412 (2615)

Diagram 10. Synthesis of (A) $5\beta P11\beta(20)$ and (B) $5\alpha P11\beta(20)$. The percentages of the main products in the reaction mixtures are indicated; $\Delta DO(20)$ is the difference between the L_R value of the compound and that of the ketalized compound. The asterisk (*) indicates a TLC fraction of R_b value 1.00 obtained with the reaction mixture of the WK step in Diagram 9.

.

Α 5βΡ3α(11 D 598	,20)	Reaction	B 5αP3β(1 D 756	11,20)
50 5βΡ3α11β D 419	50 5βΡ3α(11) D 365	W K	39 5αΡ3β(11) D 460	59 5αΡ3β11β D 540
25 5βΡ3α(11) D 365	75 $5\beta P(3,11)$ D 344 $L_R = 2536$	OX	80 $5\alpha P(3,11)$ D 603 $L_R = 2780$	20 5αΡ3β(11) D 460
30 $5\beta P3\alpha(11)$ D 365 $R_b = 0.788$ Removed by TLC	70 $5\beta P(11) DO(3)$ D 547 $L_R = 2738$ $\Delta DO(3) = 202$ $R_b = 1.00$	00	70 $5\alpha P(11)DO(3)$ D 603 $L_R = 2780$ $\Delta DO(3) = 188$ $R_b = 1.00$	30 5 α P3 β (11) D 460 $R_b = 0.688$ Removed by TLC
	85 $5\beta P11\beta DO(3)$ D 640 $L_R = 2806$ $\Delta DO(3) = 185$	RD (2 h) on TLC fraction $R_{h} = 1.00$	75 $5\alpha P11\beta DO(3)$ D 712 $L_R = 2852$ $\Delta DO(3) = 173$	
	85 $5\beta P11\beta(3)$ D 418 $L_R = 2621$	— HY	75 5 α P11 β (3) D 478 $L_R = 2679$	

Diagram 11. Synthesis of (A) $5\beta P11\beta(3)$ and (B) $5\alpha P11\beta(3)$. The percentages of the concentrations of the main products only are given. $\Delta DO(3)$ is the difference between the L_R value of the compound and that of the ketalized compound.

WK. In general terms, effects of this reaction on (3), (11), and (20) were similar to those observed with (3), (11), and (17) in the androstane series². The removal of (3) and (20) was essentially complete. Only a small proportion of these groups was reduced to OH through the side reaction (*cf.* Diagrams 1, 4, and 5, for example), and this reduction always followed a course similar to that of the RD reduction. On the other hand, (11) was not removed but underwent partial reduction to 11β , often to a large extent (*cf.* Diagrams 4–6, 9, and 11). When the desired WK product was that featuring (11), either this product was isolated through TLC (Diagram 9) or the 11 β compound was reconverted to the 11-ketone by oxidation (Diagram 11).

DO. Ketalization of (3) and (20) was essentially complete under conditions described under Experimental; yields were much lower when previously described conditions² were used. As in the androstane series², (11) reacted very poorly if not at all. In the presence of (11), 20-ketones gave rise to a proportion of abnormal, as yet unidentified ketal, of which as much as 20% was observed in the case of $5aP3\beta(11,20)$ (cf. Diagram 9B). Upon hydrolysis of DO reaction mixtures obtained with (11,20) diketones, a new ketone appeared along with the initial one. Both the new ketone and the corresponding abnormal ketal, and all products of the abnormal ketal appeared in the same proportion to the normal products in successive reactions, and appeared to undergo parallel modifications. While normal and corresponding abnormal products were not separable by TLC, the retention times and proportions of normal products were much higher in all cases.

 ΔDO values were remarkably consistent. The average of $\Delta DO(20)$ in the presence of (11) was 280 \pm 6 L_R units (Diagrams 7 and 9) and only 249 \pm 8 in the presence of 11 β (Diagrams 7 and 10). The normal value of $\Delta DO(3,20)$ in the presence of (11) was 476 \pm 6 (Diagrams 8A and B), and 437 \pm 3 in the presence of 11 β . The much lower $\Delta DO(3,20)$ values with $\Delta 44P(3,11,20)$ (Diagram 8C) indicated abnormal products. While the formation of $\Delta 44PDO(3)$ from $\Delta 44P(3)$ steroids has been demonstrated⁵, hydrolysis of such ketals under present conditions² has exclusively yielded $\Delta 4P(3)$ compounds in all cases. These were identified by their known retention times and that of their RD reduction products, *i.e.*, the corresponding $\Delta 44P3\beta$ compounds. The latter were clearly distinguishable from the known retention times of corresponding $\Delta 5P3\beta$ compounds.

From Diagram 11, the average $\Delta DO(3)$ values in the presence of (11) and 11β were 195 ± 7 and $180 \pm 5 L_R$ units, respectively. Calculated as the difference between average $\Delta DO(3,20)$ and $\Delta DO(20)$ values, these $\Delta DO(3)$ values were 196 and 188, respectively, thus fairly close to those obtained directly.

The additivity, predictability, and structural specificity of $\angle 1DO$ values confirm prior suggestions² as to their usefulness in steroid identification.

OX. As in the androstane series², CrO_3 oxidation under present conditions² of 11 β to (11) was very rapid (Diagrams 4 and 5) and that of 20 α and 20 β to (20) somewhat less so (Diagram 6). With 3α or 3β , the reaction was never complete in 5 h (Diagrams 6, 9 and 11).

TMS. Hydroxyl groups 3a, 3β , 20a and 20β were completely derivatized under present conditions². As in the androstane series², the retention time shift upon TMS derivatization was always positive, and 11β never formed a derivative (*cf.* N and D data in the diagrams). The advantages of TMS derivatization have been discussed².

HY. Hydrolyses performed under present conditions² were complete in all cases.

GLC data analysis and L_R values computations

Application of the methods of "GLC data analysis"² has established the patterns of G_R -normal and G_R -odd steroids clearly shown in Table XVIII. With a single exception, the steroids of groups P(20), P20 β , and P20 α are G_R -normal. Hence their L_R values can be accurately predicted from that of a single standard steroid in each group. As shown previously² the method consists in obtaining the G_R value of the group by subtracting M_R , taken from Table IV, from the L_R value of the standard. When, for instance, the $5\alpha P3\beta$ members of the groups were chosen as standards, the G_R values thus obtained were those shown in brackets in Table XVI for the aforementioned groups. The L_R value of each steroid in these groups was then obtained as $L_R = M_R + G_R$ (eqn. 8 in ref. 2) where M_R is the appropriate value taken from Table IV. When compared to observed L_R values (Tables XIII, XIV, XV) the computed values showed errors which, expressed in seconds of retention time, have been listed in the last three columns of Table XVII.

TABLE IV

M₂ VALUES AND SOURCES OF M-STEROIDS OF THE PREGNANE SERIES*

Steroid		M _R	Source	
М	Formula	t' _{NR}		
I	5 <i>β</i> Р	129.5	2113	P5700
П	5αP	141	2150	P1800
Ш	5βΡ3β	252.5	2402	PREP; WK-5 β P3 β (20)
IV	5aP3a	252	2401	COMP: M_{μ} 5aA3a** + 226*** = 2401
v	5βP(3)	258	2412	COMP; $M_{\mu} 5\beta A(3)^{**} + 226^{***} = 2412$
VI	5βΡ3 <i>α</i>	264	2421	P7800
VII	$5\alpha P(3)$	284	2453	P4200
VIII	∠14P3β	304	2483	COMP; $M_B 44A3\beta^{**} + 226^{***} = 2483$
IX	∠15P3β	314	2497	Q5350
X	5αP3β	321	2506	P3450
XI	∠14P(3)	340	2531	COMP; $M_R 44A(3)^{**} + 226^{***} = 2531$

* Cf. ref. 2, Table II.

** For M_R values, cf. ref. 2, Table I.

*** Cf. ref. 2, eqn. 17.

The (11)-featuring steroids showed G_{R} -odd patterns corresponding to the same M-features (Table XVIII), except for $5\beta P20\beta(11)$, which should have been G_{R} normal. The pattern of G_R -odd steroids for 11 β -featuring groups was identical also but corresponded to a different set of M-features. In the two sets of M-features, only V, VI, and VIII were common.

TABLE V

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP P(11)

Steroid			L_R	G_R^*	Source
М	Formula	ť _{NR}			
I	5βP(11)	184.5	2266	153	PREP; cf. Diagram 4
п	$5\alpha P(11)$	201	2303	153	PREP; cf. Diagram 5
111	5βP3β(11)	366	2563	161	PREP: cf. Diagram 6
IV	$5\alpha P3\alpha(11)$	362	2559	159	COMP: $L_{\mu} 5aA3a(11)^{***} + 4G_{\mu}^{*}$
v	5BP(3,11)	344	2536	124**	PREP; cf. Diagram 6 and Table III
VI	$5\beta P3a(11)$	365	2562	141**	PREP: cf. Table III
VII	$5\alpha P(3,11)$	391	2592	139**	PREP: cf. Table III
VIII	∠I4P3β(11)	420	2623	140**	COMP: $L_{\mu} \varDelta 4P3\beta 20\beta(11)^{11} - \varDelta G_{\mu}^{11}$
IX	A5P3B(11)	448	2651	154	COMP: $M_{\nu} \angle 15P3\beta^{***} + G_{\nu} P(11)^*$
x	$5\alpha P3\beta(11)$	460	2663	157	PREP: cf. Table III
XI	⊿4P(3,11)	454	2655	123**	COMP: L_{μ} /14P(3.11.20) ** - ΔG_{μ}^{\dagger}

* Average G_R -normal = $G_R P(11) = 156$. ** G_R -odd steroid.

*** Ref. 2, Table III.

⁶ $\angle 1G_R = 232$, cf. Table XVI. ⁸ For L_R value, cf. appropriate table.

*** Cf. Table IV.

[†] For ΔG_R value, cf. Table XVI, last column.

TABLE VI

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP P11 β

Steroid		L_R	G_R^*	Source	
М	Formula	ť NR			
I	5β Ρ 11β	211	2324	211**	PREP; cf. Diagram 4
п	$5\alpha P11\beta$	234	2369	219	PREP; cf. Diagram 5
ш	5β Ρ 3β11β	414	2617	215**	PREP; cf. Diagram 6 and Table III
IV	5α Ρ3α11 β	409	2612	211**	COMP; L_R 5 α A3 α 11 β^{***} + ΔG_R^{*}
v	5 ^β P11 ^β (3)	418	2621	209**	PREP; cf. Diagram 11
VI	5 8 P3a11 B	419	2622	201**	PREP; cf. Table III
VII	$5\alpha P11\beta(3)$	478	2679	226	PREP; cf. Diagram 11
VIII	∠14P3B11B	493	2692	209**	COMP; $L_B \varDelta 4P3\beta 11\beta 20\beta^{\dagger\dagger} - \varDelta G_B^{\dagger}$
IX	∠15P3β11β	522	2718	221	COMP: $M_B \preceq 15P3\beta^{111} + G_B P11\beta^*$
x	5α Ρ 3β11β	540	2732	226	PREP; cf. Table III
XI	∠l4P11β(3)	563	2751	221	COMP; $L_R \angle 1P11\beta(3,20)^{15} - \angle 1G_R^{\dagger}$

* Average G_R -normal = $G_R P11\beta$ = 222. ** G_R -odd steroid.

- *** Ref. 2, Table IV.

 $^{\circ} \Delta G_R = 226$, cf. Table XVI.

¹⁵ For L_R value, cf. appropriate table.

*** Cf. Table IV.

[†] For ΔG_R value, cf. Table XVI.

TABLE VII

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP P(11,20)

Steroid			LR	G_{R}^{\star}	Source
М	Formula	t' _{NR}			
T	5/3P(11,20)	303	2481	368	PREP; cf. Diagram 9A
11	$5\alpha P(11,20)$	334	2524	374	PREP; cf. Diagram 9B
ш	5βP3β(11,20)	598	277 7	375	P7900
IV	$5\alpha P3\alpha(11,20)$	587	2769	368	COMP; L_R 5\alpha A3\alpha (11,17)*** + $2 G_R$ *
v	5BP(3,11,20)	572	2758	346**	Q500
VI	$5\beta P3\alpha(11,20)$	598 🛃 🔒	2776	355**	P7850
VII	$5\alpha P(3,11,20)$	650	2813	360**	P5630
VIII	214P3/3(11,20)	687 🛐	2837	354**	COMP; $L_R \varDelta 4P3\beta 20\beta(11)^{11} - \varDelta G_R^{111}$
IX	/15P3/3(11,20)	728	2862	365	COMP; $M_R \bigtriangleup 5P3\beta^{\dagger} + G_R P(11,20)^{\star}$
x	$5\alpha P3\beta(11,20)$	756	2878	372	P3600
XI	△4P(3,11,20)	740	2869	338**	Q4160

* Average G_R -normal = $G_R P(11,20) = 370$. ** G_R -odd steroid.

Cf. ref. 2, Table V.

 ${}^{\flat} \varDelta G_R = 235$; cf. Table XVI.

** For L_R value, cf. Table IX.

^{\$\$\$} For ΔG_R value, cf. Table XVI.

† Cf. Table IV.

TABLE VIII

VALUES OF L _R AND G _R AND SOURCES OF S	STEROIDS OF GROUP P118(20)
--	----------------------------

Steroid			L_R	G_R^*	Source
М	Formula	t' _{NR}			
I	5βP11β(20)	368	2566	453**	PREP; cf. Diagram 10A
II	$5\alpha P11\beta(20)$	412	2615	466	PREP; cf. Diagram 10B
III	58P38118(20)	725	2860	458**	PREP; cf. Diagram 7A
IV	$5\alpha P3\alpha 11\beta(20)$	704	2847	446**	COMP: $L_{\mu} 5\alpha A3\alpha 11\beta(17)^{***} + AG_{\mu}^{5}$
v	5BP11B(3,20)	728	2862	450**	PREP: cf. Diagram 8A
VI	$5\beta P3\alpha 11\beta(20)$	723	2859	438**	PREP: cf. Diagram 7B
VII	$5\alpha P_{11}\beta(3.20)$	832	2920	465	PREP: cf. Diagram 8B
VIII	∠14P3B11B(20)	858	2933	450**	COMP: $L_{\rm P} \Delta 4P3\beta 11\beta 20\beta^{11} - \Delta G_{\rm P}^{111}$
IX	∠15P3B11B(20)	910	2959	462	COMP: $M_{\mu} \angle 15P3\beta^{\dagger} + P11\beta(20)^{*}$
x	$5\alpha P3\beta 11\beta(20)$	938	2972	466	SRC: also PREP: cf. Diagram 7C
XI	∠14P11β(3,20)	984	2993	462	Q3270; also PREP; cf. Diagram 8C

* Average G_R -normal = G_R P11 $\beta(20)$ = 464. * G_R -odd steroid.

*** For L_R value, cf. ref. 2, Table VI.

 ${}^{\circ} \Delta G_R = 213, cf.$ Table XVI. ${}^{\circ} For L_R$ value, cf. Table XI.

*** For $\angle IG_R$ value, cf. Table XVI.

[†] For M_R value, cf. Table IV.

L/L plots² (Fig. 1a) clearly showed the relatedness of (11)-featuring groups and also the relatedness of 11β -featuring groups (Fig. 1b). As expected $5\beta P20\beta(11)$ (see above) did not obey the rule, nor did $5\beta P3a 11\beta 20\beta$, which in this regard behaved as its $5\beta A3\alpha 11\beta 17\beta$ counterpart by showing excess oddity². It follows from these

TABLE IX

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP $P20\beta(11)$

Steroid			L _R	G _R *	Source
М	Formula	ťNR			
I	5βP20β(11)	408	2610	497**	PREP; cf. Table II
11	$5\alpha P20\beta(11)$	457	2660	510	PREP; cf. Table II
111	5βP3β20β(11)	816	2912	510	PREP; cf. Diagram 3
IV	$5\alpha P3\alpha 20\beta(11)$	820	2913	511	COMP: L_{μ} 5 α A3 α 11 β (17)*** + ΔG_{μ} *
v	5βP20β(3,11)	794	2900	488**	COMP: L_{μ} 5 β P(3.11.20) ⁵⁵ + ΔG_{μ} ⁵⁵⁵
VI	5βP3a20β(11)	805	2906	485**	PREP: cf. Table II
VII	$5\alpha A20\beta(3,11)$	904	2956	503**	COMP: L_{μ} 5\alpha P(3.11.20) ** + ΔG_{μ} ***
VIII	$\Delta 4P3\beta 20\beta(11)$	956	2980	503**	PREP: cf. Table II
IX	△5P3β20β(11)	1015	• 3007	510	COMP: $M_{\mu} \Delta 5P3\beta^{\dagger} + G_{\mu} P20\beta(11)^{*}$
x	5aP3/320/3(11)	1048	3020	514	PREP: cf. Table II
XI	∠14 P20β(3, 11)	1028	3012	483**	COMP; $L_R \triangle 4P(3,11,20)^{51} + \triangle 1G_R^{55}$

* Average G_R -normal = $G_R P20\beta(11) = 511$. * G_R -odd steroid.

.

*** For L_R value, cf. ref. 2, Table VII.

[§] For ΔG_R value, *cf.* Table XVI.

⁵⁵ For L_R value, cf. Table VII.

¹¹¹ For ΔG_R value, cf. Table XVI.

[†] For M_R value, cf. Table IV.

TARIEX

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP P20 $\alpha(11)$

Steroid			L_R	G_R^*	Source
М	Formula	l'NR			
I	5β P20 α(11)	426	2629	516**	PREP: cf. Table II
П	$5\alpha P20\alpha(11)$	468	2670	520	PREP; cf. Table II
Ш	5βP3β20a(11)	850	2929	527	PREP; cf. Table II
IV	$5\alpha P3a20a(11)$	844	2926	525	COMP; L_R 5aP3a20 β (11)*** + 13*
v	$5\beta P20\alpha(3,11)$	828	2918	514**	COMP; L_{R} 5 β P20 β (3,11)*** + 18*
VI	$5\beta P3a20a(11)$	845	2927	506**	PREP: cf. Table II
VII	$5\alpha P20\alpha(3,11)$	927	2967	514**	COMP; L_R 5aP20 β (3,11)*** + 11*
VIII	$\angle 14P3\beta 20\alpha(11)$	973	2988	505**	PREP; cf. Table II
IX	Δ5P3β20α(11)	1036	3015	518	COMP; $L_{R} = 45P3\beta 20\beta(11)^{***} + 8^{\circ}$
x	$5\alpha P3\beta 20\alpha(11)$	1068	3029	523	PREP; cf. Table II
XI	⊿4P20a(3,11)	1052	3022	491**	COMP; $L_R \Delta 4P20\beta(3,11)^{***} + 10^{5}$

* Average G_R -normal = G_R P20 $\alpha(11)$ = 523. * G_R -odd steroid.

*** For L_R value, cf. Table IX.

⁵ Cf. Table XVIII and text.

relationships that L_{R} values of (11)-featuring steroids on the one hand, and 11 β featuring steroids on the other hand were accurately calculated through the ΔG_R method² from the L_R values of a few selected available standards by procedures previously used with the androstane (17)- and 17β -counterparts. The accuracy of these computations using the ΔG_R values listed in Table XVI were clearly predictable from the precision of L/L plots (Figs. 1a and 1b).

TABLE XI

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP PI1 β 20 β

Steroid			L_R	G_R^*	Source
М	Formula	ťNR			
I	5 βP 11 β 20 β	442	2645	532**	PREP; cf. Table I
11	5αΡ11β20β	500	2699	549	PREP; cf. Table I
ш	5βΡ3β11β20β	8 7 4	2941	540**	PREP; cf. Diagram 2 and Table I
IV	5αP3α11β20β	874	2942	540**	$\operatorname{COMP}; L_R 5\alpha A 3\alpha 11\beta 17\beta^{***} + \Delta G_R^{*}$
v	5βP11 β20β(3)	891	2950	536**	$COMP; L_R \ 5\beta P11\beta(3)^{15} + \angle 1G_R^{116}$
VI	5βΡ3α11β20β	868	2938	517**	PREP; cf. Table I
VII	$5\alpha P11\beta 20\beta(3)$	1024	3010	557	$COMP; L_R 5\alphaP11\beta(3)^{\ddagger \$} + \varDelta G_R^{\ddagger \ddagger \$}$
VIII	$\Delta \mathbf{P} \mathbf{\beta} \mathbf{\beta} 1 \mathbf{\beta} 2 0 \mathbf{\beta}$	1060	3025	542**	PREP; cf. Table I
IX	A5P3B11B20B	1123	3050	553	COMP; $M_R \angle 15P3\beta^{\dagger} + G_R P11\beta 20\beta^{\dagger}$
x	5α Ρ 3β11β20β	1158	3064	558	PREP; cf. Table I
XI	$\varDelta 4P11\beta 20\beta(3)$	1210	3084	552	$COMP; L_R \angle 14P11\beta(3,20)^{\dagger\dagger} + \angle 1G_R^{\dagger\dagger\dagger}$

* Average G_R -normal = G_R P11 β 20 β = 555.

** G_R-odd steroid.

*** For L_R value, cf. ref. 2, Table VIII.

* For $\angle IG_R$ value, cf. Table XVI.

** For L_R value, cf. Table VI.

*** For $\angle IG_R$ value, cf. Table XVI. * For M_R value, cf. Table IV. ** For L_R value, cf. Table VIII.

TABLE XII

Steroid			L_R	G_R^*	Source
M	Formula	ťNR			
I	5βΡ11β20α	499	2698	585**	PREP; cf. Table I
II	$5\alpha P11\beta 20\alpha$	557	2745	595	PREP; cf. Table I
III	5βΡ3β11β20α	981	2992	590**	PREP; cf. Diagram 2
IV	5aP3a11 <i>8</i> 20a	978	2991	591**	COMP: L_{R} 5\alpha P3\alpha 11\beta 20\beta^{***} + 49^{\starset}
v	$5\beta P11\beta 20\alpha(3)$	1010	3004	592**	COMP: L_{μ} 5 β P11 β 20 β (3)*** + 54*
VI	58P3a11820a	985	2993	572**	PREP; cf. Table I
VII	$5\alpha P11\beta 20\alpha(3)$	1140	3057	604	COMP: $L_R 5\alpha P11\beta 20\beta(3)^{***} + 47^{\circ}$
VIII	∠14P3β11β20α	1171	3068	585**	PREP; cf. Table I
IX	15P3β11β20α	1243	3094	597	COMP; $L_{\mu} \varDelta 5P3\beta 11\beta 20\beta^{***} + 44^{5}$
x	$5\alpha P3\beta 11\beta 20\alpha$	1278	3107	600	PREP: cf. Table I
XI	⊿4P11β20α(3)	1350	3130	599	COMP; $L_R (4P11\beta 20\beta(3)^{***} + 46^{5})$

Average G_R -normal = $G_R P11\beta 20\alpha = 599$. G_R -odd steroid.

*** For L_R value, cf. Table XI. ⁶ See Table XVIII and text.

The important new fact arising from the present data was the relatedness of steroids of the androstane series previously described² with their pregnane counterparts in the present article, according to the following pattern:

A(11)/P(11)	and	$AII\beta/PII\beta$
A(11,17)/P(11,20)		$A11\beta(17)/P11\beta(20)$
Α17 β(11)/ Ρ2 0β(11)		A11β17β/P11β20β

TABLE XIII

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP P(20)

Steroid		L_R	G_R^{\star}	Source	
M	Formula	t' _{NR}			
I	5βP(20)	221	2344	231	SRC
_ II	5αP(20)	242	2384	234	SRC
ш	5βP3β(20)	435	2638	236	P8180
IV	5αP3α(20)	434	2637	235	COMP ; M_{R} 5 α P 3 α^{**} + 234 [*]
v	$5\beta P(3,20)$	439	2643	231	P7150
VI	5βΡ3α(20)	455	2658	237	P8150
VII	$5\alpha P(3,20)$	495	2690	237	P2750
VIII	Δ4P3β(20)	521	2717	234	COMP: $M_{B} \Delta 4P3\beta^{**} + 234^{*}$
IX	∠15P3β(20)	535	2728	231	O5500
X	$5\alpha P3\beta(20)$	554	2743	233	P3830
XI	⊿14 P(3,20)	582	2765	233	Q2 600

* Average G_R -normal = G_R P(20) = 234.

** For M_R value, cf. Table IV.

TABLE XIV

VALU	JES OF L_R AN	$D G_R AN$	D SOUR	CES OF ST	TEROIDS OF GROUP P20 β
Steroid			L_R	G _R *	Source
М	Formula	t'nn			
I	5βΡ20β	290	2463	350	PREP; RD (2 h)*** 5βP(20)*
11	5α Ρ 20β	317	2502	352	SRC
111	5βΡ3β20β	566	2753	353	P6140
IV	5α Ρ3α20 β	573	2758	354	P2000
v	5β Ρ2 0β(3)	572	2757	355	SRC
VI	5βΡ3α20β	585	2767	346**	P6050
VII	5αP20β(3)	642	2807	354	P4000
VIII	14P38208	686	2836	353	O1490
IX	∠15P3 <i>B</i> 20 <i>B</i>	709	2851	354	04490
X	5αP3β20β	728	2862	356	P2100
XI	⊿4P20β(3)	773	2888	357	Q3630

* Average G_R -normal = $G_R P20\beta$ = 353.5. * G_R -odd steroid.

*** Cf. Table I.

[†] Cf. Table XIII.

This relatedness, clearly indicated by L/L plots (Figs. 2c and d) described by the relationship

 $L_{p}(\mathbf{P}) = L_{p}(\mathbf{A}) + \varDelta G_{p}$

was expressed by corresponding ΔG_R values obtained as differences of L_R values, as the above expression indicates, for M-corresponding steroids in each related group pair. For the present demonstration, the $5a3\beta$ -steroids were used as standards for ΔG_R calculation (cf. Table XVII); the resulting ΔG_R values, listed in Table XVI,

TABLE XV

VALUES OF L_R AND G_R AND SOURCES OF STEROIDS OF GROUP P20 α

Steroid			LR	<i>G</i> _R *	Source			
M	Formula	ťNR						
I	5βΡ20α	311 175	2493	380	PREP; RD (2 h)** 5βP(20)***			
11	5aP20a	3387	2529	379	SRC			
ш	5βΡ3β20α	606	2782	380	P6100			
IV	5aP3a20a	611	2786	384	P1950			
v	5βP20α(3)	6174	2790	378	SRC			
VI	58P3a20a	634	2802	381	P6000			
VII	5αP20α(3)	681	2833	380	SRC			
VIII	Δ4Ρ3β20α	725 🖌	2860	377	PREP; RD $(2 h)^{**} \varDelta 4P(3,20)^{***}$			
IX	Δ 5 Ρ3β20α	748	2874	377	Q4460			
x	5αΡ3β20α	770	2886	380	P2050			
XI	Δ4 P20 α(3)	820	2913	382	Q3600			

* Average G_R -normal = $G_R P20\beta$ = 380, ** Cf. Table I. *** Cf. Table XIII.

•.

- - 130

TABLE XVI

G_R AND ΔG_R VALUES

Group	G_R^*	ΣG_R^{**}	Group pair	ΔG_R^{***}	Group	G _R *	∠1 <i>G</i> ⁸⁸		
							$G_R P - G_R A + 226$	$L_R P - L_R A$	
P(11)	156		P(11,20)/P(11)	214	A(11)	150.5	231.5	232	
$\mathbf{P}\hat{1}\hat{\mathbf{B}}$	222		$P20\beta(11)/P(11)$	357	AIIB	222	226	228	
P(11.20)	370	390	$P20\beta(11)/P(11,20)$	143	A(11,17)	361	235	235	
P118(20)	464	456	P118(20)/P118	242	A11B(17)	477	213	213	
P20B(11)	511	509.5	P118208/P118	333	A178(11)	507	230	235	
P118208	555	575.5	$P11\beta20\beta/P11\beta(20)$	91	A118178	568	213	214	
$P11\beta20\alpha$	599	602							
P(20)	234								
- (2	(233)								
P20/3	353.5								
•	(356)								
P20 α	380								
	(380)								

* G_R values of the groups listed in column 1 (cf. footnote * in Tables V-XV); values in brackets for P(20), P20 β , and P20 α are the G_R values of the 5α P3 β -compounds in each group.

** The ΣG_R value is the sum of the G_R values corresponding to the functional groups of the component (ref. 1); example: $\Sigma G_R P(11,20) = G_R P(11) + G_R P(20)$.

** The ΔG_R values in this column are the differences in G_R value for groups of the pair.

⁶ G_R values of the groups in column 6 taken from footnote * in Table III-VIII, ref. 2.

⁴⁴ ΔG_R values for corresponding groups in columns 1 and 6 computed from G_R values (column 8) and from L_R values (column 9) of $5\alpha P3\beta$ members of the groups (see text).

TABLE XVII

ERRORS IN SECONDS OF RETENTION TIME OBSERVED IN L_R VALUES COMPUTED FROM GLC DATA OBTAINED WITH STANDARD STEROIDS S^{*}

Steroid	ł	(11)-Fea	turing grou	ups	11β-Feat	Featuring groups Position 20				
M	Formula	(11)	(11,20)	20 <i>β(11)</i>	11β	1 IB(20)	11β20β	(20)	20ß	20α
I	5βP	0.4	+0.8	+0.5**	+0.3**	-0.5**	+0.6**	+0.6	+1.4	0
11	5αΡ	+1.2	-0.8	-+-3	+1.2	-0.6	+1.3	0.3	+1.2	-0.4
III	5βΡ3β				**	* *	**	-1.6	+1.3	0
IV	5αΡ3α				**	**	**	-1.2	0	-3.5
v	5βP(3)	+2**	+1.8**	+3.6**	+2.0**		- 1.3**	+1.2	-0.8	+1.7
VI	5βΡ3α	-2**	0**	0**	+1.1**	+1.0**	S**	-2.4	S**	-0.8
VII	5αP(3)	0**	0**	0**	+1.3	-1.2	1.3	-2.4	0	0
VIII	Δ4Ρ3 β	0,6**	-3**	+1.3**	+0.7**	+1.3**	0**	0	+1.0	+3
IX	⊿5P3β	-0.6	-5	0	0	0	-1.3	+2	S	+3
X	$5\alpha P3\beta$	S	S	S	S	S	S	S	-2.0	S
X 1	⊿4P(3)	1.2**	5**	-1.3**	0	+1.3	0	0	3.2	-2.4

* Differences observed between computed L_R values and L_R values listed in Tables V-XV were obtained in L_R units. One L_R unit corresponds to 0.233% of the retention time, t'_{NR} , or 0.14 × t'_{NR} seconds when t'_{NR} is expressed in minutes. No error is given for compounds used as standards (S) or for $5\beta P3\beta$ - and $5\alpha P3\alpha$ -compounds (see text).

** G_R -odd steroid.

TABLE XVIII

OBSERVED AND COMPUTED VALUES OF DIFFERENCES BETWEEN L_R VALUES OF M-CORRESPONDING 20 α - AND 20 β -STEROIDS

Steroid		$L_R 20\alpha - L_R$	20ß	$L_R 20\alpha(11) - 1$	L _R 20β(11)	$L_R I I \beta 20 \alpha - L_R I I \beta 20 \beta$		
М	Formula	Observed*	£**	Observed***	Computed [*]	Observed ^{\$\$}	Computed ¹	
I	5βP	30	- !-2	19	15	53	51	
П	5αΡ	27	-1	10	12	46	48	
ш	5βΡ3β	29	-+-1	17	14	51	50	
IV	5 a P3a	28	0		13		49	
v	5βP(3)	33	+-5		18		54	
VI	58P3a	35	+7	21	20	57	56	
VII	$5\alpha P(3)$	26	-2		11		47	
VIII	∠14P3β	24	-4	8	9	43	45	
IX	∕15P3 <i>β</i>	23	-5		8		44	
X 1	5α Ρ 3β	24	-4	7	9 •	43	45	
XI	∠14P(3)	25	-3		10		46	
	Mea	in 28	Mc	an 13	Me	an 49		

* From L_R values listed in Tables XIV and XV, respectively.

** Deviation from the mean.

*** From L_R values listed in Tables IX and X, respectively.

⁵ By adding ε to the mean.

⁴⁵ From L_R values listed in Tables XI and XII, respectively.

last column, then served to compute through the above expression the L_R values of the pregnane steroids, $L_R(P)$, from L_R values of their M-corresponding androstane counterparts, $L_R(A)$, taken from Tables III-VIII in ref. 2. A comparison with observed values listed in Tables V-XI has revealed errors. These, expressed in seconds of retention time, are listed in Table XVII. Of course, no error could be listed for the $5\alpha P3\beta$ -compounds used as standards. Because the L_R values of $5\beta A3\beta$ and $5\alpha P3\alpha$ steroids given in relevant tables were computed, not observed values, obtained by the above method from observed $5\beta P3\beta$ - and $5\alpha A3\alpha$ -values, respectively, they could not be used for the purpose of evaluating errors arising from the application of this method. Examination of errors listed in Table XVII shows most of them to be no larger than 3 sec; neither of the two exceptionally large 5-sec errors exceeds 1 % of the corresponding retention time.

The L_R values of P20a(11) and P11 β 20a groups can be adequately computed from the L_R values of corresponding groups featuring 20 β . This is shown in Table XVIII, where differences of L_R values of corresponding 20 α - and 20 β -featuring steroids are listed. For groups P20 α and P20 β , for example, the difference in L_R values of M-corresponding steroids varies from a mean of 29 L_R units by a variable quantity ε . Remarkably, differences of L_R values for P20 α (11) and P20 β (11) steroids on the one hand, and for P11 β 20 α and P11 β 20 β steroids on the other hand, also vary from the corresponding mean by the same quantity ε . Most steroids in the P20 β and P20 α groups are commercially available. Hence ε can be obtained for all M-features listed in Table XVIII. The L_R values of unavailable steroids in the P20 α (11) and P11 β 20 α groups therefore were computed by adding to the L_R values of their 20 β counterparts the mean difference + ε , *i.e.*, the computed differences listed in Table XVIII. As seen

Fig. 1. Examples of L/L plot. Roman numerals indicate corresponding M-features. (a) L_R (a), group P11) (for L_R values, cf. Table V); L_R (b), group P(11,20) (Table VII). (b) L_R (a), group P11 β (Table (VI); L_R (b), group P11 β (20) (Table VIII).

from this table, computed and observed differences of available pairs agree within narrow limits.

The properties of G_R -odd steroids which emerge from the data thus far presented in this series can be summarized as follows. Oddity seldom arises when Gfeatures do not include (11) or 11 β . In contrast to (17), 17 β , (20), 20 β , and 20a, functional groups (11) and 11 β induce extensive oddity. In all groups featuring (11), G_R -odd steroids correspond to specific M-features. Similarly, 11 β induces a specific pattern of G_R -odd steroids which differs from that induced by (11). Expressed in L_R units, the extent of oddity, or departure of the G_R value from the normal one², varies in both patterns according to what M-feature is present. Yet, the extent of oddity is quantitatively constant for all M-corresponding steroids featuring (11), and similarly, for those which feature 11 β . Since such steroids may include either (17), 17 β , (20), 20 β or 20a, it is evident that the extent of oddity is not affected by these functional groups, nor by modifications to the carbon skeleton, from androstane to pregnane, for example.

Fig. 2. Examples of L/L plot demonstrating relatedness of groups of the pregnane (P) and androstane (A) series. Roman numerals indicate corresponding M-features. (c) $L_R(P)$, group P11 β (Table V1; $L_R(A)$, group A11 β (Table IV, ref. 2). (d) $L_R(P)$, group P20 β (11) (Table IX); $L_R(A)$, group A17 β (11) (Table VII in ref. 2).

The constancy of oddity induced by (11) or 11β is the underlying reason for the occurrence of group relatedness characterized by ΔG_R values². Hence, it is the key to the simple, accurate computations of L_R values which have been previously demonstrated. A general method for the identification of steroids of natural origin requires, however, that similar computations be applicable to all possible combinations of functional groups which occur in these compounds. Further articles of this series will show that the extent of oddity induced by other functional groups, for example 11α , 16α , and 16β , is constant also when these functional groups coexist with one or more functional groups which do not induce oddity, including 17α and 21-OH in the pregnane series.

In view of numerous possible combinations of the functional groups mentioned above, the aquisition and testing of a considerable amount of data is a prerequisite to an unequivocal demonstration of constancy of oddity, and consequently, to the publication of the general method of steroid identification described in this series. In contrast to GLC data obtained by current methods, the numerous L_R values presented in this series are reproducible within $\pm 1 L_R$ unit in any laboratory where the present normal conditions are used². For the purpose of steroid identification, such data and the derived G_R and ΔG_R values are equivalent to accurate physical constants.

The use of different normal conditions or column packing under previously defined specifications² leads to numerically different systems of L_R , G_R and ΔG_R values which serve equally well the purpose of steroid identification². The present data should be helpful in establishing equivalent systems which in many respects are qualitatively similar to the present one.

The data on steroid preparation should be useful, if only for describing procedures to obtain samples of commercially unavailable steroids for the purpose of steroid identification. The course of simple classical reactions with functional groups studied in the present work will be reviewed at the conclusion of this series and their usefulness in the positive identification of structures suggested by retention times will be demonstrated.

Data acquisition systems including computer memory have become current features of GLC. Because all computations used in the present method are based on simple linear relations directly amenable to digitalization, operations such as the correction of retention times and the selection of probable structures corresponding to observed t'_{NR} values could be easily programmed with the present data stored in such systems.

GLC-high-resolution mass spectrometry is the current method of choice for steroid identification. The present method is undoubtedly simpler, faster, and less demanding in equipment, personnel, sample size and steroid resolution², and should prove very effective in any situation where speed and cost are serious considerations.

ACKNOWLEDGEMENTS

The technical assistance of Mr. R. D. Cochrane was highly appreciated. We are very grateful to Dr. D. F. Johnson, National Institute of Health, Bethesda, Md., U.S.A., and to Professor W. Klyne, and Dr. D. N. Kirk of Westfield College, London N.W.3, Great Britain, for numerous samples from the Steroid Reference Collection.

REFERENCES

1 F. A. Vandenheuvel and A. S. Court, J. Chromatogr., 38 (1968) 439; 39 (1969) 1.

- 2 F. A. Vandenheuvel, J. Chromatogr., 96 (1974) 47.
- 3 F. A. Vandenheuvel, J. Chromatogr., 38 (1968) 373.
- 4 F. A. Vandenheuvel, G. L. Hinderks and J. C. Nixon, J. Amer. Oil Chem. Soc., 42 (1965) 283.
- 5 J. J. Brown, R. H. Lenhard and S. Bernstein, J. Amer. Chem. Soc., 86 (1964) 2183.